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ABSTRACT

Despite MoE models leading in benchmarks, supervised fine-tuning (SFT) for the
MoE architecture remains difficult because its router layers are fragile. Methods
such as DenseMixer and ESFT mitigate collapse with dense mixing or auxiliary
load-balancing losses, but these introduce noisy gradients that often degrade per-
formance. In preliminary experiments, we systematically removed experts and
observed that while certain “super experts” are activated far more frequently, dis-
carding less used experts still leads to notable performance degradation. This
suggests that even rarely activated experts encode non-trivial knowledge useful for
downstream tasks. Motivated by this, we propose a new auxiliary loss free MoE
SFT framework that combines router biases with shared condenser experts. Instead
of enforcing balanced activation across all experts, our method leverages bias
updates to encourage imbalanced and sparse routing, allowing rarely used experts
to become inactive while designating two existing experts as shared condensers
that aggregate knowledge from the inactive set without increasing the per-token
compute budget. Router stability is maintained entirely through bias updates that
regulate token-level and expert-level activation, eliminating the need for auxiliary
losses. Experiments on large-scale MoE models demonstrate that our approach
outperforms state-of-the-art SFT baselines such as DenseMixer and ESFT, achiev-
ing 4%+ gain on both mathematical reasoning and commonsenseQA benchmarks.
Pruning and inter-expert correlation analyses confirm that our condenser experts
aggregate knowledge from the long-tail experts, preserving performance under
sparse routing.

1 INTRODUCTION

Mixture-of-Experts (MoE) models scale language models efficiently by activating only a small subset
of experts per token, enabling massive capacity without increasing per-token compute. Yet the same
sparse routing that drives their success also makes them fragile: MoE relies on a non-differentiable
Top-K router, which blocks straightforward gradient flow and makes post-training, such as supervised
fine-tuning (SFT), far more difficult than for dense LLMs.

Over the years, researchers have sought to stabilize MoE training through progressively refined routing
strategies. GShard (Lepikhin et al., 2020) introduced top-2 gating with heavy auxiliary balancing
losses, while Switch Transformers (Fedus et al., 2022) simplified this to a single expert per token.
More recent work, such as DeepSeek-MoE (Wang et al., 2024a) and DeepSeek-V3 (Liu et al., 2024a),
explored bias-based routers and minimized auxiliary losses to reduce gradient noise and improve
efficiency. However, these advances primarily address pre-training. In the post-training setting, SFT
remains underexplored: ESFT (Wang et al., 2024b) routes all gradients to the most-activated expert,
while DenseMixer (Yao et al., 2025) improves slightly by applying a Straight-Through Estimator
(STE) (Bengio et al., 2013) to approximate updates for inactive experts, yet STE introduces biased
gradients.

In parallel, recent studies have identified the existence of “super experts”Su et al. (2025) or “super
weights”Yu et al. (2025), whose activations dominate routing and whose removal leads to sharp
performance degradation. These findings suggest that a small subset of experts carries dispropor-
tionate importance. However, our observations reveal a complementary phenomenon: even the
rarely activated experts encode indispensable information, and pruning them also causes substantial
performance decline. This highlights the need for fine-tuning strategies that not only preserve the
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capacity of frequently activated super experts, but also retain knowledge embedded in the long tail of
rarely used experts.

Motivated by these observations, we adapt the bias-updating principle of DeepSeek’s Loss-Free
Balancing to the post-training setting. Instead of aiming for balanced activation across all experts,
we propose an auxiliary-free fine-tuning framework that enforces sparse routing through globally
negative biases. This drives rarely used experts toward inactivity, while two designated Condenser
Experts stay active and collect gradients from the other experts, effectively consolidating their
knowledge. In doing so, our method closes the train–inference routing gap and preserves information
from both dominant and rarely activated experts, achieving significant improvements in fine-tuning
performance on reasoning and coding benchmarks. Experimental results show that our method
consistently outperforms SoTA MoE SFT methods by 4+ points when post-training popular MoE
LLMs on commonsense reasoning (PIQA, ARC, SIQA) and math reasoning benchmarks (MATH-500,
AIME-25, GPQA, GSM8K, etc). Our implementation is open source Anonymously 1.

1.1 CONTRIBUTIONS

• Through systematic pruning and scaling-law analysis, we show that even rarely activated
experts encode indispensable knowledge. Removing them leads to substantial performance
degradation, highlighting the need to preserve contributions beyond the most frequently
activated “super experts.”

• We extend scaling-law analysis to MoE compression by relating performance to the number
of expert parameters retained. Our study compares dense merging, expert pruning, and
reduced activation budgets, offering new insights into the trade-offs between model size,
sparsity, and accuracy.

• We propose Expert Condenser, an auxiliary-free fine-tuning framework that enforces
sparsity via bias-driven routing while introducing shared Condenser Experts to preserve
knowledge from inactive experts. This design narrows the train–inference routing gap and
enables stable MoE post-training.

2 DOES SAVING "SUPER EXPERTS" MEAN SAVING MODEL PERFORMANCE?

Previous work (Lu et al., 2024; Su et al., 2025) has shown that pruning away frequently activated
“super experts” causes large performance degradation, underscoring their importance. However,
these studies stop short of asking the complementary question: is retaining only the super experts
sufficient to preserve model quality?

To answer this, we conduct a systematic scaling-law analysis of experts. Whereas concurrent
works (Tian et al., 2025; Nakamura et al., 2025) focus on how activation ratio (the number of experts
active per token) affects accuracy, we instead examine how performance scales with the total number
of expert parameters retained. The Top-k selection for token t is defined as

St = TopK
(
{sj,t}nj=1, k

)
, gi,t = 1[ i ∈ St ],

where n is the total number of experts, k is the number of experts activated per token, sj,t is the
gating score of expert j for token t, and gi,t indicates whether expert i is selected2. We investigate
three strategies as is illustrated in Fig. 1 to study the scaling law by varying n (the size of the expert
pool) and k (the activation budget):
(i) Dense conversion via expert pruning. We reduce the expert pool from n to n′ and activate all
surviving experts:

n → n′, k = n′.

St = {1, . . . , n′} for all tokens, and the model effectively becomes a smaller dense model.
(ii) Smaller MoE conversion via expert pruning. We prune experts from n to n′ but keep the
activation budget strictly smaller than the remaining pool:

n → n′, k < n′.

1https://anonymous.4open.science/r/Finetuning-MOE-F652
2Detailed clarifications for all notation are in Appendix A
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Figure 1: Illustration of the three expert scaling strategies. (Left: Small-Dense) Experts are pruned,
and all surviving experts are always activated, yielding a smaller dense model. (Middle: Small MoE)
Experts are pruned and only a subset of them are activated per token, resulting in a smaller but still
sparse MoE. (Right: Inference Reduce) Fewer experts are selected per token while the expert pool is
unchanged. Pruned experts are shown in gray, kept experts in light green, and selected experts for a
given token in dark blue. A substantial performance gap remains between the base model and pruned
variants under Small Dense and small MoE categories.

The model remains an MoE, since only the top-k experts are selected from the n′ survivors.
(iii) Reducing the activation budget while keeping full model size. We keep the total number of
experts fixed but reduce the activation budget from k to k′:

n fixed, k → k′ < k.

St becomes smaller (|St| = k′), increasing sparsity while leaving the expert pool unchanged.

To select important experts prior to pruning, we adopt two metrics following ESFT (Wang et al.,
2024b): ES-Act (activation ratio) and ES-Mag (weight magnitude). Full definitions are given in
Appendix D. Unless otherwise specified, all experiments use ES-Act as the default selection criterion.3

To conduct a scaling-law analysis of experts, we conduct experiments using GPT-OSS OpenAI (2025)
and DeepSeek-Coder-V2-Lite (Liu et al., 2024a). In figure 1, we summarize the results across the

3ES-Mag yields comparable results; see Appendix L for a detailed comparison.
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three strategies. Table 7 and Table 6 in Appendix C. Although scaling-law trends are evident after
pruning, a substantial performance gap remains between the base model and pruned variants. For
example, retaining the top 75% of experts still results in more than a 10% drop. Appendix K (Fig. 5)
further shows that expert activation is highly skewed: a few “super experts” dominate routing, while
a long tail of rarely activated experts—together accounting for only about 10% of activations—still
represents a substantial portion of the model’s parameter capacity.

Crucially, our experiments reveal that these rarely activated experts nonetheless encode indispensable
knowledge, and pruning them leads to substantial degradation. This observation motivates our
approach: rather than discarding inactive experts, we introduce a condenser-sharing mechanism
that preserves their contributions under sparse routing, enabling more stable and effective MoE
fine-tuning.

3 PROPOSED METHODS: EXPERT CONDENSER

Our post-training framework addresses a core challenge in MoE: preserving the knowledge distributed
across all experts—both dominant and rarely activated—while adapting the model to a new task.
Rather than enforcing balanced expert usage, our method explicitly encourages sparsity by down-
biasing less relevant experts and systematically transferring their knowledge into two designated
Condenser Experts.

Our approach has two key components: (i) an auxiliary-free routing mechanism that enforces sparsity
through dynamic bias adjustments, and (ii) two always-active Condenser Experts that serve as
repositories for aggregated knowledge from inactive experts.

3.1 AUXILIARY FREE SPARSITY ENFORCEMENT

A critical challenge in MoE post training is the noise introduced by auxiliary balancing losses. While
such losses encourage expert diversity during pre-training, they also inject competing gradient signals
that can hinder convergence on specialized downstream tasks.

We eliminate this issue by adopting an auxiliary-loss-free routing strategy for fine-tuning, where
the routing logits are directly modified with trainable bias parameters bi

n
i=1, one per expert. The

router’s Top-k selection, S, is performed on these biased logits: S = TopK
(
{si + bi}ni=1

)
where si

is the original raw logit for expert i. The crucial distinction is that the final gating weights, ρi, are
still computed from the original unbiased logits si, isolating the routing decision from the output
computation.

Unlike pre-training methods that adjust biases to prevent routing collapse, our objective in fine-tuning
is to induce a controlled collapse. Biases for experts that are rarely useful for the target task are
progressively decreased, making them unlikely to be selected. This naturally separates experts into
two groups: a small set of task-relevant “active” experts and a long tail of “inactive” experts. By
explicitly enforcing sparsity, this mechanism narrows the train–inference routing gap and lays the
foundation for our condenser strategy.

3.2 HYBRID SHARED EXPERTS WITH GUARANTEED GATING

Our architecture employs a hybrid approach to "shared" computation, which introduces two distinct
types of shared experts, as visually referenced in Fig. 2.

Type-G (Ungated) Shared Experts. The first component, shown as green boxes (
{
e
(l)
∗,i

}n̂

i=0
), is a

set of “Type-G” Shared Experts. These behave as standard feed-forward layers that are applied to
every input token xj . Unlike routed experts, they do not receive gating weights; instead, their outputs
are summed directly into the representation: h(g) =

∑n̂
i=1 FFN(G)

i (xj)
Type-B (Guaranteed Gated) Shared Expert. The second component is a pair of Type-B Shared

Experts, shown as blue boxes drawn from the routed expert pool (
{
e
(l)
i

}n

i=0
). Let us denote this

expert as FFN(B)
j . This expert is "shared" in the sense that it is guaranteed to be selected for every

token. This selection is performed just once at the start of the fine-tuning process, by identifying
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Figure 2: Representation of our Experts Condenser framework. (Left) An auxiliary-free router adds
trainable biases bi to logits si,t. Less relevant experts accumulate negative biases, and the two
lowest-bias experts m,n are designated as Condenser Experts.(Right) These Condenser Experts are
always selected during training, ensuring they receive gradients and act as repositories that condense
knowledge from inactive experts—preserving information while enforcing sparsity.

the two most frequently activated experts. Throughout the entire post training procedure, these
two experts are then statically enforced into the active set for every token, supplementing the k-2
specialists dynamically chosen by the router.

The routing process is therefore modified: the router selects the Top-(k − 2) experts from the
remaining n− 2 blue experts, and these two special experts {j} are always added to the active set S.
Thus, S = TopKi∈{1..n}\{j}({si + bi}, k − 2) ∪ {j}, ensuring |S| = k.

The key distinction—why these two experts are "different from the green ones"—is that it is both
shared (always selected) and gated. Like all other k−2 selected experts in S, it receives a computed
gate weight gi,j from the router. h(b) =

∑
i∈S gi,jFFN(B)

i (xj)

The final layer output h′
t combines the residual, Type-G shared path, and Type-B gated path: h′

t =
ut + h(g) + h(b). This method ensures a baseline of common knowledge (from Type-G) while also
forcing the model to always utilize and weigh the contribution of a specific, powerful "capillary"
expert (Type-B), supplemented by k − 2 other dynamically chosen specialists.

4 BACKGROUND AND RELATED WORKS

Post-training for Mixture-of-Experts (MoE) large language models remains relatively underexplored.
Recent efforts have primarily focused on how to adapt experts so that they better align with down-
stream domains. Two representative approaches are Expert Supervised Fine-Tuning (ESFT) (Wang
et al., 2024b) and DenseMixer (Yao et al., 2025), which propose different strategies for handling
gradient propagation through the non-differentiable Top-k routing mechanism.

ESFT 4 ESFT strengthens the role of the most frequently activated experts by routing gradients only
through the Top-k set St. Formally, if wi,t denotes the routing weight of expert i for token t, then

the gradient with respect to router parameters θ is approximated as ∇θL ≈
∑

i∈St

(
∂L
∂yt

· vi
)

∂wi,t

∂θ .

Here St = TopK({wj,t}nj=1, k) is the set of selected experts, and vi is the output of expert i. While
this approach explicitly reinforces the “super experts” that dominate activation, the less activated
experts are frozen and treated as trivial experts.
DenseMixer. 3 DenseMixer instead addresses the non-differentiability of Top-k routing by adopting a

4More details about ESFT and DenseMixer are in Appendix G
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straight-through estimator (STE). In this view, the backward pass ignores the hard selection and treats
TopK as the identity map: ∂ TopK(w1,t,...,wn,t)i

∂wj,t
≈ δi,j . As a result, gradients flow to all experts’

routing weights, not just those in St: ∇θL ≈
∑n

i=1

(
∂L
∂yt

· vi
)

∂wi,t

∂θ . However, both ESFT (Wang
et al., 2024b) and DenseMixer (Yao et al., 2025) still suffer from the additional noise introduced by
auxiliary balancing losses. Moreover, they overlook the fact that less frequently activated experts also
encode indispensable knowledge and contribute significantly to overall model performance.

5 EXPERIMENTAL RESULTS

Model Architecture and Dataset: In our experimental setup, we use open-weight GPT-OSS-
20B (OpenAI, 2025), Deepseek-V2-Lite (Liu et al., 2024a), Deepseek-Coder-V2-Lite-Instruct (Liu
et al., 2024a), OLMoE-7B-01-25 (Muennighoff et al., 2024), Qwen1.5-MoE-A2.7B (Yang et al.,
2024), and Qwen3-30B-A3B (Yang et al., 2025) to conduct experiments.

In Section§ 2, We study the MoE expert scaling law using Deepseek-Coder-V2-Lite-Instruct base
model and GPT-OSS-20B base model, and test the evaluation performance on MultiArith,
GSM_8K (Cobbe et al., 2021), AddSub, AQuA, SingleEq, SVAMP, and mawps.

In Subsection § 5.1, we evaluate MoE post-training algorithms on math reasoning domains. We
fine-tune on the Math7K and Math14K dataset using the DeepSeek-V2-Lite, Qwen1.5-MoE-A2.7B,
OLMoE-7B-01-25 and test the evaluation performance on downstream testsets MultiArith,
GSM_8K (Cobbe et al., 2021), AddSub, AQuA, SingleEq, SVAMP, and mawps. Then, we
post-train Qwen1.5-MoE-A2.7B, DeepSeek-Coder-V2-Lite-Instruct, and Qwen3-30B-A3B on
Stanford-S1 dataset (Muennighoff et al., 2025) and test the evaluation performance on down-
stream SOTA math reasoning benchmarks AIME2025, AIME2024, GPQA-Diamond (Rein et al.,
2024), and MATH-500.

In Subsection § 5.2, we turn to commonsense reasoning. Following (Hu et al., 2023; He et al., 2024;
Liu et al., 2024b), we merge the training sets of eight tasks into commonsense_15k and evaluate on
their individual test sets: BoolQ, PIQA, SIQA, HellaSwag, ARC-e, ARC-c, and OBQA. Results
are reported as accuracy, with an averaged score summarizing overall effectiveness. Across all
datasets—Stanford-S1K, Commonsense, Math7K, and Math14K—our setup emphasizes the
generalization ability of LLMs across diverse sub-tasks. More details about experimental settings can
be found in Appendix B.

5.1 MATH REASONING

We evaluate ExpertCondenser, our proposed method, against two state-of-the-art MoE post-training
approaches: ESFT (Wang et al., 2024b) and DenseMixer (Yao et al., 2025). To ensure a fair
comparison, we adopt the same training configurations as prior work, including batch size, data type,
learning rate, and sequence length. We re-implemented ESFT and DenseMixer following the reported
setups in (Yao et al., 2025), and reuse their best-reported results when available.

Table 1 demonstrates that on most SoTA math reasoning benchmarks, ExpertCondenser outperforms
baseline methods across Qwen3, DeepSeek-Coder-V2-Lite, and Qwen2. ExpertCondenser enhances
accuracy of DenseMixer by 5.9%, 5.3%, and 7.1% on Qwen3, DeepSeek-Coder-V2-Lite, and Qwen2
respectively.

We further reports zero-shot performance after one epoch of fine-tuning on two math reasoning
datasets (Math-7K 7 and Math-14K) in Table 2. Across all benchmarks (GSM8K, SingleEq, SVAMP,
MultiArith, AddSub, AQuA, and MAWPS), ExpertCondenser consistently outperforms both ESFT
and DenseMixer on DeepSeek-V2-Lite, Qwen2-MoE, and OLMoE. Notably, by more effectively
consolidating expert knowledge, ExpertCondenser achieves substantial gains over prior approaches.
On Math-7K, it improves the average accuracy of Qwen2-MoE from 57.9 (DenseMixer) to 63.4
(+5.5%), DeepSeek-V2-Lite from 66.8 to 73.1 (+6.3%), and OLMoE from 64.8 to 70.2 (+5.4%).
On Math-14K, ExpertCondenser further boosts performance: Qwen2-MoE rises from 62.9 to 67.9
(+5.0%), DeepSeek-V2-Lite from 64.9 to 69.4 (+4.5%), and OLMoE from 65.7 to 70.0 (+4.3%).

7More details about Commonsense dataset can be found in Appendix J.
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Table 1: Evaluation of SFT model Zero-Shot P@ss1:4 samples Results on downstream math reasoning
benchmarks after fine-tuning with Stanford-S1, including GPQA Diamond, AIME 2024, AIME 2025,
and MATH-500.5

Model Model Size Activate #Param Distill Type GPQA Diamond AIME 2024 AIME 2025 MATH-500 AVG

Qwen3 30B 3B

ExpertCondenser(Ours) 68.8 68.3(82/120) 51.7(62/120) 96.8 71.4
DenseMixer6 58.5 63.9 45.8 93.6 65.5

ESFT 2 54.8 61.6 45.6 93.4 63.9
Base Model 2 38.9 20.6 7.7 72.8 35.0

DeepSeek-Coder-V2-Lite 16B 2.4B

ExpertCondenser(Ours) 40.6 9.2(11/120) 6.7(8/120) 68.9 31.4
DenseMixer 34.8 2.5(3/120) 2.5(3/120) 64.8 26.1

ESFT 32.2 2.5(3/120) 2.5(3/120) 63.0 25.0
Base Model 31.9 0.8(1/120) 1.7(2/120) 62.0 24.1

Qwen2 14B 2.7B

ExpertCondenser(Ours) 34.6 6.7(8/120) 6.7(8/120) 28.6 19.5
DenseMixer 26.8 1.7(2/120) 0.8(1/120) 20.4 12.4

ESFT 26.4 0.8(1/120) 0.8(1/120) 18.1 11.5
Base Model 25.9 0.0 0.0 8.4 8.6

Table 2: Evaluation of post-trained models (Zero-Shot results after 1 epoch training) on downstream
Math Reasoning datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Dataset Model Model Size Activate #Param Post-train Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

math7k

DeepSeek-V2-Lite 16B 2.4B

ExpertCondenser (Ours) 59.4 92.5 69.1 91.5 79.5 36.1 83.6 73.1
DenseMixer 57.8 81.2 67.2 89.6 64.6 28.8 78.8 66.8

ESFT 58.6 80.9 65.8 90.7 62.3 27.6 76.1 66.0
Base Model 8.0 20.0 26.6 24.0 35.4 21.4 33.6 24.2

QWen2-MoE 14B 2.7B

ExpertCondenser (Ours) 57.2 74.6 55.7 86.0 61.8 33.1 75.6 63.4
DenseMixer 48.2 71.3 53.8 78.6 54.8 28.6 70.2 57.9

ESFT 46.9 69.3 54.1 75.7 52.2 27.6 68.1 56.2
Base Model 25.6 31.3 27.4 33.5 46.8 25.4 28.2 31.2

OLMoE 7B 1B

ExpertCondenser (Ours) 68.4 79.8 71.2 93.8 63.4 36.3 78.8 70.2
DenseMixer 64.8 78.2 92.0 56.4 58.6 30.2 73.5 64.8

ESFT 62.2 75.2 68.0 93.3 58.2 28.7 73.1 65.5
Base Model 16.1 23.6 17.7 9.2 21.3 22.8 13.9 17.8

math14k

DeepSeek-V2-Lite 16B 2.4B

ExpertCondenser (Ours) 63.6 81.2 71.8 93.8 60.8 33.2 81.4 69.4
DenseMixer 59.4 78.6 67.4 89.4 57.8 28.6 73.6 64.9

ESFT 58.2 75.8 65.2 89.0 56.5 29.5 73.5 64.0
Base Model 8.0 20.0 26.6 24.0 35.4 21.4 33.6 24.2

QWen2-MoE 14B 2.7B

ExpertCondenser (Ours) 58.8 81.2 59.2 91.6 72.8 33.2 78.4 67.9
DenseMixer 52.6 75.2 56.8 87.8 65.4 28.6 73.6 62.9

ESFT 52.5 76.0 54.1 86.2 62.3 29.5 71.4 71.7
Base Model 25.6 31.3 27.4 33.5 46.8 25.4 28.2 31.2

OLMoE 7B 1B

ExpertCondenser (Ours) 67.8 81.6 72.4 86.8 68.8 32.8 79.6 70.0
DenseMixer 65.8 76.8 68.2 80.6 62.4 30.7 75.3 65.7

ESFT 64.4 77.0 68.9 81.8 64.1 30.7 74.8 65.9
Base Model 16.1 23.6 17.7 9.2 21.3 22.8 13.9 17.8

Table 3: Accuracy comparison of OLMoE, Qwen2-MoE, and DeepSeek-V2-Lite with various post-
training methods on commonsense reasoning datasets. Results of all ExpertCondenser are obtained
using the hyper-parameters described in (Liu et al., 2024b) under the same settings.

Model Model Size Post-train method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

OLMoE 7B

ExpertCondenser 66.8 79.9 72.1 80.3 78.6 86.6 70.9 75.0 76.3
DenseMixer 62.8 68.7 65.3 71.6 73.5 81.3 63.5 71.3 69.8

ESFT 63.5 63 58.9 64.7 62.8 74.8 63.8 63.4 64.4
Base Model 48.9 48.3 10.9 32.6 28.7 32.9 31.4 24.8 32.3

Qwen-2-MoE 14.3B

ExpertCondenser 72.1 84.9 75.6 81.6 79.8 88.5 78.1 84.4 80.6
DenseMixer 70.8 85.7 74.6 75.8 78.9 82.6 74.8 77.8 77.6

ESFT 69.7 85.3 75.4 78.2 74.2 84.0 71.8 75.0 76.7
Base Model 51.0 68.1 56.2 31.0 48.3 64.8 52.3 49.2 52.6

5.2 OTHER DATASETS

To ensure that our findings above are generalizable, we further examine the performance of ExpertCon-
denser under the common sense reasoning dataset CommonSense-15K, including six downstream
test datasets, BoolQ, PIQA, SIQA, HellaSwag, ARC-e, ARC-c, and OBQA.

Table 3 reports the performance of DenseMixer, ESFT, and ExpertCondenser on the CommenSense
dataset8 We can observe that ExpertCondenser surpasses the DenseMixer by 5.3% on post-trained OL-
MoE. On post-trained Qwen-2-MoE, ExpertCondenser surpasses the best performance of DenseMixer
and ESFT by 3.0% and 3.9%, respectively.

8Please note that we are using CommonSense-15K, the smaller version of CommenSense-170K.
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5.3 SYSTEM EFFICIENCY UNDER PARAMETER OFFLOADING

Figure 3: Expert activation counts for all experts across each
layer for three methods:(a) Expert Condenser, (b) ESFT, and
(c) DenseMixer.

Table 4: The experiments involved
Post-training, ESFT, DenseMixer, and
ExpertCondenser on 8× H100 80GB
GPUs using parameter offloading,
with a batch size of 32. Communi-
cation between the GPU and CPU was
facilitated via PCIe-G4.

DeepSeek-V2-Lite
Post-Train Activate #Params% Time/s Speedup

DenseMixer 16B 362.83 1×
ESFT 2.4B 152.78 2.37×

ExpertCondenser 2.4B 126.24 2.87×

Training large-scale MoE models often depends on parameter offloading (e.g., ZeRO-2 and ZeRO-
3 (Ren et al., 2021)), where expert weights are dynamically swapped between GPU and CPU to meet
memory limits. The efficiency of this process is highly sensitive to activation patterns, as frequent
transfers of large expert weights over PCIe or NVLink can dominate runtime.

Our Expert Condenser provides a systems advantage by designating two always-active Condenser
Experts. Because these experts consistently handle the majority of activations, their parameters can
remain resident in GPU memory, avoiding repeated CPU–GPU transfers and reducing offloading
overhead. Figure 3(a) shows expert activation counts for DeepSeek-V2-Lite after post-training, where
the two Condenser Experts dominate activations and therefore never need to be swapped out of GPU
memory.

By contrast, DenseMixer activates all experts in each forward pass. This not only introduces extra
forward computation but also incurs high cost: every expert’s parameters must be loaded into
GPU, eliminating sparsity benefits and drastically increasing offloading traffic. This eliminates the
computational savings of MoE and dramatically increases offloading traffic, as the system can no
longer exploit sparsity to minimize parameter swaps. As shown in Figure 3(c), all experts exhibit
uniformly high activation counts, reflecting the full activation pattern. ESFT activates only the Top-k
experts, saving computation, but the selected set St varies across tokens. Figure 3(b) illustrates this
behavior: activations are more evenly distributed across experts, but without fixed shared experts,
GPU residency is volatile and offloading overhead remains high.

In Table 4, we provide the post-training time costs for DenseMixer, ESFT, and ExpertCondenser.
ExpertCondenser achieves an 2.87× speedup compared to DenseMixer and outperforms ESFT. We
conducted time profiling by averaging the post-training time every 10 iterations over 300 iterations,
following a 50-iteration warm-up period. Post-training utilized MoE parameter offloading settings to
simulate GPU memory limited scenarios. ExpertCondenser offers greater computational efficiency,
though these are secondary benefits compared to its primary focus.

6 FURTHER ANALYSIS

Pruning after condensing: A key question for our framework is whether the two Condenser Experts
truly aggregate knowledge from other experts. To evaluate this, we repeat the dense conversion via
expert pruning experiment9. We then compare the performance degradation between ExpertCondenser
and ESFT. Table 5 shows the results of pruning while keeping the remaining experts activated. Our
method outperforms ESFT by more than 25% across all benchmarks. This confirms the robustness of
the always-active Condenser Experts and provides strong empirical evidence that they retain their
knowledge during post-training.

9Detailed definitions can be found in Section §2. For pruning, we use the ES-ACT metric (see Appendix L)
to select the experts to keep, ensuring that the two Condenser Experts are always preserved.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Evaluation of DeepSeek-V2-Lite models after post-training with ESFT and ExpertCondenser,
followed by expert pruning.

Method Strategies Remain Experts (n′) Activate Experts (k′) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

ExpertCondenser Small Dense 24 24 38.6 65.3 49.3 78.7 47.6 18.1 62.4 51.4
Small Dense 32 32 49.3 73.8 56.4 81.3 53.8 23.4 68.3 58.0

ESFT Small Dense 24 24 22.4 31.2 28.3 33.1 21.4 20.1 27.5 26.3
Small Dense 32 32 27.4 37.6 31.4 37.2 28.8 22.4 32.5 31.6

Expert correlation Analysis: To assess how fine-tuning alters dependencies between experts, we
examine the similarity of their parameter updates. Specifically, we compute the Pearson correlation
between the parameters of the condensed experts and those of other experts, comparing the fine-tuned
model to the base model. This measure captures linear relationships in parameter changes, allowing
us to track how knowledge is redistributed across experts. A formal definition of Pearson correlation
is provided in Appendix I.

Observation. Expert Condenser explicitly targets shared experts and consolidates the capacity
of regular experts into the shared expert, resulting in pronounced, concentrated shifts. Regularly
routed experts are compared against these shared experts by computing Pearson correlations be-
tween their down-projection weight matrices before and after fine-tuning. Relative changes in these
correlations—normalized by the base model—reflect how each method reshapes inter-expert de-
pendencies. As shown in Fig. 4, both Expert Condenser and ESFT increase correlations relative
to the baseline, with Expert Condenser driving a stronger global increase in correlations. Relative
correlation increases average 0.005 more across all layers compared to ESFT. The earliest layer shows
the most significant shifts, highlighting Expert Condenser’s central role in shaping foundational
representations.

(a) Shared Expert 0 correlation changes. (b) Shared Expert 1 correlation changes.

Figure 4: Correlation changes between the shared expert and regular experts at Layer 1. Each bar
shows how the correlation between a regular expert and the shared expert changes after fine-tuning,
compared to the base model. Expert Condenser (red) causes concentrated shifts, markedly strength-
ening positive correlations while suppressing negative ones. In contrast, ESFT (green) produces
smaller, more diffuse adjustments across experts. These results illustrate that Expert Condenser more
aggressively reshapes inter-expert relationships, while ESFT exerts a milder influence.

7 CONCLUSION

Our empirical findings reveal that even rarely activated experts encode indispensable knowledge, and
pruning them directly leads to substantial performance degradation. Motivated by this observation,
we proposed ExpertCondenser, a post-training framework that leverages bias updates to enforce
sparse and imbalanced routing. This design allows rarely used experts to gradually become inactive,
while two designated experts are consistently activated and serve as Condenser Experts that aggre-
gate knowledge from the inactive set through backward propagation. By combining sparsity with
knowledge preservation, ExpertCondenser significantly outperforms existing post-training methods
such as ESFT and DenseMixer across math and commonsense reasoning benchmarks.
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ETHICS STATEMENT

This research focuses on the post-training of Mixture-of-Experts (MoE) Large Language Models
(LLMs). All datasets used in this work are publicly available and widely adopted in prior research,
and all models are open-weighted releases. Our study does not involve human subjects, interventions
in live systems, or the use of private or sensitive data. No personally identifiable information (PII)
or demographic attributes are included in either the training or evaluation process. As such, we do
not identify direct ethical concerns or risks associated with the methodology or findings presented
here. Nevertheless, we acknowledge that any advancement in LLM efficiency and performance can
indirectly influence downstream applications, and we encourage practitioners to consider the broader
societal implications of deploying MoE-based LLMs at scale.

REPRODUCIBILITY STATEMENT

We place strong emphasis on reproducibility and transparency in this work. To enable independent
verification, we adopt standardized datasets, provide detailed experimental configurations, and commit
to releasing all necessary code and artifacts.

• Datasets: All experiments are conducted using open-source and publicly available datasets,
ensuring unrestricted access for replication.

• Algorithms and Models: We will release the full implementation of our methods, including
training and inference scripts, hyperparameter settings, and evaluation protocols.

• Artifacts: Preprocessing scripts, simulator code, and pipeline configurations will be made
available for end-to-end reproduction of experiments.

Upon camera-ready submission, we will provide a public GitHub repository containing all code and
documentation. This repository will enable researchers to reproduce all results, figures, and tables
presented in the paper, and to extend our work for future research on MoE post-training.

USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this project, large language models (OpenAI’s GPT-5, Anthropic’s Claude) were used
for:

• Editing support: Suggestions for improving clarity, flow, and conciseness in written
sections.

• Code prototyping: Assisting with drafting and refining code snippets to test methods and
workflows.

All outputs from the model were reviewed, tested, and revised by the author to ensure accuracy and
appropriateness for the final submission.
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A NOTATION

For clarity, we summarize the main notations used throughout the theoretical sections.

hi Raw output vector of expert i.
vi Decomposed expert output: vi = ρiei.
ρi Magnitude (norm) of expert i’s output.
ei Normalized direction vector of expert i, ∥ei∥ = 1.
y Dense output: y =

∑n
i=1 vi.

ŷ Sparse approximation using only k experts.
S Index set of selected experts, |S| = k.
λi Binary indicator of expert selection.

n, k Total number of experts, and number of selected experts.

v
(l)
i,j,k Output of expert i at layer l for token k in xj .

g
(l)
i,j,k Gate score assigned to expert i at layer l for token k.

gi,t Indicator if expert i is selected for token t (shorthand).
si,t Gating score (logit) of expert i for token t before normalization.
wi,t Softmax-normalized routing weight assigned to expert i for token t, and softmax-normalized

routing weight from the unbiased scores si,t.
Lj Length (number of tokens) of sample xj .

Ds, Ns Subset of training data and its size.
xj jth token for training

s
(l)
i Magnitude-based expert score (ES-Mag) at layer l.

r
(l)
i Activation-ratio expert score (ES-Act) at layer l.
K Number of experts selected per token.

S(l) Set of selected experts at layer l.
LBalance Auxiliary loss for balancing expert utilization.

fi Normalized fraction of tokens routed to expert i.
Pi Average routing weight assigned to expert i across tokens.
α Hyperparameter controlling auxiliary loss strength.
T Sequence length (number of tokens).
θ Router parameters used to compute gating scores.
L Generic training loss depending on model output y.
bi Expert-wise bias used only for selection to improve load balance.

s̃i,t Biased gating score for expert i on token t: s̃i,t = si,t + bi.
St Top-K selection set for token t obtained from {s̃j,t}nj=1.
γ Bias update speed.
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B EXPERIMENTAL SETTINGS

Training Framework and Hyper-parameters: We used the huggingface-trl (von Werra et al.,
2020) library with zero-2 or zero-3 (Ren et al., 2021) for fine-tuning and vllm (Kwon et al., 2023),
lighteval (Habib et al., 2023), and accelerate (Gugger et al., 2022) library for inference
evaluation. Both training and evaluation are using dtype BF16.

MoE Post-train Baselines: For state-of-the-art (SOTA) MoE post-training baselines, we choose to
include ESFT (Hu et al., 2021) and DenseMixer (Yao et al., 2025). The number of epochs, learning
rate and batch. For each method, we conduct a grid search on the training hyper-parameters (learning
rate and batch size) and report the best performance. We also reuse all the results if they have been
reported in baselines.

Computational Resources: We conduct our experiments and implement SOTA baselines of ESFT
and DenseMixer Yao et al. (2025) to post-train with 8 NVIDIA H100_80GB GPUs. Communication
between the CPU and GPU is facilitated via PCIe-G4 and communication between GPUs is facilitated
via Nvlink-3.

C TABLE RESULTS FOR EXPERTS SCALING LAWS

Tables 6 and 7 report detailed results of our scaling law experiments on two representative MoE
models: GPT-OSS-20B and DeepSeek-Coder-V2-Lite. We evaluate performance under three pruning
strategies introduced in Section §2:

(1) Small Dense Conversion, where the number of experts is reduced from n to n′ and all surviving
experts are activated (k = n′);

(2) Inference Reduction, where the total number of experts is fixed (n′ = n) but the activation budget
is reduced from k to k′ < k; and

(3) Small MoE Conversion, where both the total number of experts is reduced (n′ < n) and the
activation budget is kept sparse (k < n′).

Table 6: Evaluating base GPT-OSS-20B model Zero-Shot Results on downstream Math Reasoning
dataset, includes SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.
Model Strategies Remain Experts (n′) Activate Experts (k′) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

GPT-OSS-20B

Base Model 32 4 78.0 84.6 84.1 92.0 81.0 33.9 92.0 77.9

Small Dense

8 8 2.3 1.7 1.8 2.7 1.8 16.7 2.3 4.2
12 12 4.8 17.8 14.6 18.4 18.6 22.8 17.3 16.3
18 18 48.6 39.6 47.8 52.6 63.7 23.8 47.8 46.3
24 24 56.9 58.2 63.5 68.5 67.5 24.6 58.7 56.8

Inference Reduce
32 1 5.5 19.7 13.6 12.8 19.5 23.2 18.1 16.1
32 2 70.8 74.6 76.4 88.2 75.4 29.9 76.9 70.3
32 3 75.1 83.9 84.3 93.3 81.3 33.1 80.7 76.0

Small MoE

8 4 1.6 2.2 3.2 3.2 2.0 12.6 2.5 3.9
12 4 6.4 18.7 21.8 13.0 18.2 21.7 16.0 16.5
16 4 20.2 43.7 48.1 43.7 41.0 24.0 42.4 37.6
20 4 32.8 56.1 59.9 58.2 52.9 25.6 55.5 48.7
24 4 49.6 72.4 74.5 83.3 72.4 29.1 70.2 64.5

Table 7: Evaluating base DeepSeek-Coder-V2-Lite-Instruct model Zero-Shot Results on downstream
Math Reasoning dataset, includes SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.
Model Strategies Remain Experts (n′) Activate Experts (k′) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

DeepSeek-Coder-V2-Lite

Base Model 64 6 82.6 95.1 83.6 94.3 89.6 26.4 86.6 79.7

Small Dense

6 6 1.4 1.0 1.7 2.8 1.8 22.0 2.1 4.7
12 12 1.7 11.0 4.5 7.2 13.2 24.0 9.7 10.2
16 16 11.8 38.2 22.6 32.0 31.1 17.7 31.9 26.5
20 20 26.0 63.2 46.0 67.7 56.5 17.7 58.4 47.9
24 24 36.9 75.2 58.4 76.0 70.1 20.1 66.4 57.6
32 32 47.8 83.5 71.4 88.2 81.8 24.4 79.6 68.1
48 48 48.6 82.7 72.4 87.6 82.6 24.7 80.4 68.4

Inference Reduce

64 1 28.5 68.7 50.7 73.0 64.6 24.0 72.6 54.6
64 2 49.2 86.6 70.5 92.8 79.2 24.8 78.2 68.8
64 3 54.3 87.2 76.6 92.3 80.3 25.6 84.9 71.6
64 4 53.7 87.0 76.1 94.7 83.5 26.4 83.2 72.1
64 5 57.9 89.0 79.8 95.7 84.6 25.2 84.5 73.8

Small MoE

12 6 0.7 0.4 1.5 0.8 0.0 16.9 1.3 3.1
16 6 0.8 0.2 1.4 1.2 1.3 13.4 1.3 2.8
24 6 11.3 45.9 33.5 41.8 46.6 17.7 43.3 34.3
32 6 35.6 76.4 63.4 80.7 69.7 22.0 74.8 60.4
48 6 49.0 85.4 75.2 93.2 80.8 21.7 80.7 69.4
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D SELECTING TOP-k EXPERTS

We define two top-k selection rules, selecting by magnitude score and selecting by activation ratio.
Let v(l)i,j,k be the output of expert i at layer l for token k in sample xj , with gate score g

(l)
i,j,k. Each

sample has length Lj , and we draw a subset Ds = {xj}Ns
j=1 from the training set. We compute a

per-expert relevance score and pick Top-k experts for routing or distillation.

Magnitude Score (ES-Mag). Estimate expert importance by average output magnitude:

s
(l)
i =

1

Ns

Ns∑
j=1

1

Lj

Lj∑
k=1

∥∥∥v(l)i,j,k

∥∥∥ .
When only a scalar amplitude ρ

(l)
i,j,k is available, we approximate ∥v(l)i,j,k∥ ≈ ρ

(l)
i,j,k; this criterion

favors experts with larger norm contributions (see Appendix H for justification).

Activation Ratio (ES-Act). Estimate importance by how often the expert is selected:

r
(l)
i =

1

Ns

Ns∑
j=1

1

Lj

Lj∑
k=1

1
[
g
(l)
i,j,k > 0

]
K

,

where K is the number of experts selected per token. This captures routing preference and data
alignment.

Selection. For layer l, choose

S(l) = TopK
(
{s(l)i }i

)
or S(l) = TopK

(
{r(l)i }i

)
,

and select the variant by validation performance: ES-Mag emphasizes magnitude-dominant contribu-
tion, while ES-Act reflects gate-driven frequency.
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E AUXILIARY LOSS FOR LOAD BALANCING

Uncontrolled routing strategies in Mixture-of-Experts (MoE) models often suffer from load imbalance.
This manifests in two ways: (i) routing collapse, where only a small subset of experts are consistently
selected, leading to undertraining of the remaining experts; and (ii) computational imbalance, where
uneven routing across devices increases latency and reduces efficiency. To mitigate these issues, an
auxiliary loss is commonly introduced in SOTA MoE models ().

For a sequence of length T , the auxiliary loss is defined as

LBalance = α

n∑
i=1

fiPi,

where α is a hyperparameter controlling the strength of the regularization. Here,

fi =
n

KT

T∑
t=1

1[gi,t > 0] , Pi =
1

T

T∑
t=1

si,t.

The term fi measures the fraction of tokens routed to expert i, normalized by the total number of
tokens T , experts n, and the per-token selection budget K. The term Pi is the average routing
probability assigned to expert i, where si,t denotes the gating score of expert i for token t. The loss
encourages alignment between routing frequency (fi) and gating probability (Pi), thereby preventing
collapse and promoting balanced utilization of experts.
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F AUXILIARY-LOSS-FREE LOAD BALANCING STRATEGY

To improve load balance without introducing an additional loss term, Deepseek-V3 (Liu et al.,
2024a) adjust the selection rule by adding an expert-wise bias to the gating scores. Let si,t be the
(un-normalized, before Softmax) gating score for expert i on token t. We define a biased score

s̃i,t = si,t + bi,

where bi is an expert-specific bias that is updated by a balancing controller (e.g., based on utilization
statistics; see remark below). The Top-k selection set for token t is then

St = TopK
(
{s̃j,t}nj=1, K

)
, gi,t = 1[ i ∈ St ].

Important distinction (selection vs. weighting). The bias bi is only used to influence which
experts enter St. It does not modify the routing weights used to combine expert outputs. Weights are
obtained from the unbiased scores via softmax:

wi,t =
exp(si,t)∑n
j=1 exp(sj,t)

,

and the token-level MoE output is

yt =

n∑
i=1

gi,t wi,t vi =
∑
i∈St

wi,t vi, with vi = ρiei.

Thus bi affects who is selected but never changes the weights wi,t applied to the selected experts in
the forward pass.

Algorithm (per token t).

1. Compute unbiased scores {si,t}ni=1 and weights wi,t = softmax(si,t).
2. Form biased scores s̃i,t = si,t + bi and select St = TopK({s̃j,t}nj=1,K).

3. Set indicators gi,t = 1[i ∈ St] and compute yt =
∑

i∈St
wi,tvi.

Bias updating bi. Any load-balancing controller can be used to update the biases; for example,
one may adjust bi as a function of the observed utilization fi and target utilization K/n (e.g., with a
moving-average estimator). In DeepSeek-V3, during training, they monitoring the expert load on the
whole batch of each training step. At the end of each step, we will decrease the bias term by γ if its
corresponding expert is overloaded, and increase it by γ if its corresponding expert is underloaded,
where γ is a hyper-parameter called bias update speed. Through the dynamic adjustment, DeepSeek-
V3 keeps balanced expert load during training, and achieves better performance than models that
encourage load balance through pure auxiliary losses.
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G GRADIENT PROPAGATION THROUGH TOP-k ROUTING

Consider a Mixture-of-Experts layer where the router produces gating scores {si,t}ni=1 for token t.
These scores are normalized via a softmax to obtain the routing weights

wi,t =
exp(si,t)∑n
j=1 exp(sj,t)

, i = 1, . . . , n.

We then select the top-k experts according to these weights and form the token-level output

yt =
∑
i∈St

wi,t vi,

where St = TopK
(
{wj,t}nj=1

)
is the index set of the k largest weights, and vi = ρiei is the

contribution of expert i (with ρi the magnitude of hi and ei its normalized direction). The final loss
for this token is L = L(yt).

Gradient with respect to router parameters. Back-propagation through this layer requires differ-
entiating the loss with respect to the router parameters θ:

∇θL =

n∑
i=1

(
∂L
∂yt

· vi
)
· ∂ TopK(w1,t, . . . , wn,t)i

∂wi,t
· ∂wi,t

∂θ
.

The Jacobian term ∂wi,t/∂θ is determined by the softmax of the gating scores si,t, while the middle
factor contains the (non-differentiable) Top-k selection.

Conventional approximation: SFT and ESFT A common approximation in MoE training treats
the Top-k operation as if it were differentiable by passing gradients only through the selected experts.
Formally, one replaces

∂ TopK(w1,t, . . . , wn,t)i
∂wj,t

≈ δi,j 1[i ∈ St],

where δi,j is the Kronecker delta. Under this approximation, the router gradient reduces to

∇θL ≈
∑
i∈St

(
∂L
∂yt

· vi
)

∂wi,t

∂θ
.

Thus only the experts chosen in St receive gradient updates through the gating mechanism.

Straight-through (STE) approximation: DenseMixer An alternative, more precise approxi-
mation—used in methods like DenseMixer—employs a straight-through estimator (STE). In the
backward pass, the Top-k operation is treated as the identity map:

∂ TopK(w1,t, . . . , wn,t)i
∂wj,t

≈ δi,j .

This allows gradients to flow to all experts’ routing weights, yielding

∇θL ≈
n∑

i=1

(
∂L
∂yt

· vi
)

∂wi,t

∂θ
.

In this view, the forward pass still uses a hard Top-k selection, but the backward pass distributes
gradients as though the selection were an identity operator.

Summary. The conventional method restricts gradient updates to the selected experts St, while the
straight-through method propagates gradients to all experts by overriding the Top-k operation in the
backward pass.
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H THEORETICAL SUPPORTS FOR TOP-K SELECTION.

In a Mixture-of-Experts (MoE) architecture, each expert contributes to the overall output as

vi = ρiei,

where ρi is the gating weight corresponds to the i-th expert, ei is the expert output, and vi is the
output vector of the i-th expert. In a dense model, the final output is given by

y =

n∑
i=1

vi =

n∑
i=1

ρiei.

In a sparse Mixture-of-Experts (MoE) model, we aim to reduce computation by selecting only a
subset of experts. Thus, we wish to approximate y using

ŷ =
∑
i∈S

vi,

where S is a subset of indices with |S| = k ≪ n. This objective can be formulated as the minimization
problem

min
λ1,...,λn∈{0,1}

∥∥∥∥∥
n∑

i=1

vi −
n∑

i=1

λi vi

∥∥∥∥∥
2

subject to
n∑

i=1

λi = k,

where λi = 1 indicates that expert i is selected, and λi = 0 indicates it is omitted. In many practical
scenarios, especially when the normalized directions ei are not strongly correlated, this minimization
is well approximated by selecting the experts with the largest values of ρi. Intuitively, experts with
large ρi contribute most significantly to the norm of y, so preserving these in the approximation
yields a smaller error. We analyze why selecting experts with large ρi is a reasonable approximation
in the following.

In a Mixture-of-Experts (MoE) architecture, each expert contributes to the overall output as

vi = ρiei,

where ρi is the gating weight and ei is the expert output. When analyzing why the top-k selection
rule arises, it is instructive to consider two scenarios: one in which the vectors vi are orthonormal (or
nearly so) and another in which they have general correlations.

In this appendix, we show that in the non-orthonormal case, selecting the top-k experts with the
largest ρi provides a close approximation to the full model output while substantially reducing
computational cost. In the orthonormal case, this selection is provably optimal; in the general case, it
serves as a widely used and effective heuristic.

THE ORTHONORMAL (OR WEAKLY-CORRELATED) CASE

Assume that the vectors v1, v2, . . . , vn are strictly orthonormal, i.e.,

v⊤i vj =

{
0, if i ̸= j,

∥vi∥2, if i = j.

Then, the squared norm of the omitted portion,∥∥∥∥∥
n∑

i=1

(1− λi)vi

∥∥∥∥∥
2

,

expands as ∥∥∥∥∥
n∑

i=1

(1− λi)vi

∥∥∥∥∥
2

=

n∑
i=1

(1− λi)
2∥vi∥2,

and since λi ∈ {0, 1}, we have (1− λi)
2 = (1− λi). Therefore, the objective becomes
n∑

i=1

(1− λi)∥vi∥2,
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subject to
∑n

i=1 λi = k. To minimize this quantity, it is optimal to set λi = 1 for the k vectors with
the largest norms ∥vi∥2 and λi = 0 for the others. In the orthonormal case, this strategy is provably
optimal.

Even if the vectors are only weakly correlated, the same principle generally holds: larger magnitudes
imply a larger contribution to the overall sum, so omitting vectors with small ∥vi∥ results in a minor
error, making the top-k selection by magnitude a robust heuristic.

THE GENERAL (NON-ORTHONORMAL) CASE

When the vectors vi have significant correlations, the cross terms do not vanish. In this case, the error
term becomes∥∥∥∥∥

n∑
i=1

(1− λi)vi

∥∥∥∥∥
2

=

n∑
i=1

(1− λi)∥vi∥2 + 2
∑

1≤i<j≤n

(1− λi)(1− λj)v
⊤
i vj .

Here, the cross terms v⊤i vj can affect the error significantly. In principle, finding the subset S that
minimizes this expression exactly is an NP-hard combinatorial problem. However, in practice, one
commonly uses the heuristic of selecting the top k experts based on the individual magnitudes ∥vi∥
(or a predicted magnitude ρi). This approach is effective because, in many settings, the largest
magnitude vectors still dominate the overall contribution even when correlations are present. In
scenarios where two high-magnitude vectors are strongly correlated, more sophisticated selection
methods might improve the approximation, but the top-k rule remains a strong and computationally
efficient baseline.

Conclusion: Whether the expert output vectors are orthonormal or generally correlated, the top-k
selection rule emerges from the objective of preserving the dominant contributions to the sum while
minimizing approximation error. In an MoE architecture, each expert’s output vi = ρiei contributes to
the overall sum. By selecting the k experts with the largest ρi, one can achieve a good approximation
of the full model output with significantly reduced computational cost. In the orthonormal case, this
method is exactly optimal, while in the general case it remains a widely-used and effective heuristic.
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I DEFINITION OF CORRELATION

Correlation Gain on down_proj (vs. Base). For each expert e, let we = vec(W
(e)
down) and define

Cij = Corr(wi,wj) =
(wi − w̄i1)

⊤(wj − w̄j1)

∥wi − w̄i1∥2 ∥wj − w̄j1∥2
,

where w̄i is the mean of wi. Across three settings s∈{1, 2, 3} ( 1: Base, 2: ESFT, 3: Expert Con-
denser ), we compute the pairwise percent gain over Base for shared→regular pairs:

∆
(l)
ij,s(%) = 100×

C(l)
ij,s − C(l)

ij,1

C(l)
ij,1

, i ∈ {0, 1}, j ∈ {2, . . . , 63}, s ∈ {2, 3},

where l indexes the MoE layer. A layer-level summary is

∆̄(l)
s (%) =

1

2 · 62

2∑
i=1

64∑
j=3

∆
(l)
ij,s(%), s ∈ {2, 3},

and the aggregate across all layers L is

∆̄s(%) =
1

L

L∑
l=1

∆̄(l)
s (%), σs = Std

(
{∆̄(l)

s (%)}Ll=1

)
.
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J MATH7K DATASET

Math10K dataset can evaluate the effectiveness of LLMs on the arithmetic reasoning task. Math10K
incorporate six subsets including GSM8k, SingleEq, SVAMP, MultiArith, AddSub, and
AQuA.(1) the GSM8K (Cobbe et al., 2021) dataset consists of high quality linguistically diverse grade
school math word problems created by human problem writers, (2) the SVAMP (Patel et al., 2021)
benchmark consists of one-unknown arithmetic word problems for up-to-4 grade level students by
making simple changes to a set of problems from another existing dataset, (3) the MultiArith (Roy
& Roth, 2016) dataset of math word problems requiring multiple reasoning steps and operations, (4)
the AddSub (Hosseini et al., 2014) dataset of addition and subtraction arithmetic word problems, (5)
the AQuA (Ling et al., 2017) dataset of algebraic word problems with natural language rationales, and
(6) the SingleEq (Koncel-Kedziorski et al., 2015) dataset of grade-school algebra word problems
that map to single equations with varying length;

K EXPERT ACTIVATION PROBABILITIES IN BASE DEEPSEEK-V2-LITE

Figure 5: Expert activations rate in whole math7K dataset. Expert Activations are tested using the
Deepseek-V2-Lite base model.
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L ES-ACT VERSUS ES-MAG

In this Appendix, we conduct ablation studies to investigate between Magnitude Score(ES-Mag)
and Activation Ratio(ES-Act), which one is the better metric to select preserving experts when we
converting the original Mixture of Expert model into smaller models (either smaller dense models or
smaller MoE models).

Table 8: Evaluation of post-trained models (Zero-Shot results after 1 epoch training) on downstream
Math Reasoning datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Metric Method Model Size #Param (Experts) Post-train Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

ES-Act

Smaller-Dense

-B(6)

- Base Model

1.4 1.0 1.7 2.8 1.8 22.0 2.1 4.7
-B(12) 1.7 11.0 4.5 7.2 13.2 24.0 9.7 10.2
-B(16) 11.8 38.2 22.6 32.0 31.1 17.7 31.9 26.5
-B(20) 26.0 63.2 46.0 67.7 56.5 17.7 58.4 48.0
-B(24) 36.9 75.2 58.4 76.0 70.1 20.1 66.4 57.6
8B(32) 47.8 83.5 71.4 88.2 81.8 24.4 79.6 68.1

Smaller-MoE

-B(12)

2.4B(6) Base Model

0.7 0.4 1.5 0.8 0.0 16.9 1.3 3.1
-B(16) 0.8 0.2 1.4 1.2 1.3 13.4 1.3 2.8
-B(24) 11.3 45.9 33.5 41.8 46.6 17.7 43.3 34.3
8B(32) 35.6 76.4 63.4 80.7 69.7 22.0 74.8 60.4
-B(48) 49.0 85.4 75.2 93.2 80.8 21.7 80.7 69.4

ES-Mag

Smaller-Dense

-B(6)

- Base Model

1.6 1.2 2.1 2.6 2.1 18.9 2.3 4.4
-B(12) 1.8 11.8 5.2 6.8 13.6 23.8 9.4 10.3
-B(16) 12.6 38.8 23.8 33.8 32.6 22.4 31.9 28.0
-B(20) 25.4 64.8 45.6 68.8 56.3 18.2 59.8 48.4
-B(24) 37.4 76.8 60.2 75.4 70.8 18.8 65.2 57.8
8B(32) 48.2 82.8 72.2 87.8 82.2 24.2 83.2 68.6

Smaller-MoE

-B(12)

2.4B(6) Base Model

0.7 0.4 1.7 0.6 0.0 18.6 1.6 3.4
-B(16) 1.3 0.4 2.6 1.8 1.6 13.6 10.4 4.5
-B(24) 10.8 44.7 32.8 42.3 44.8 21.3 44.8 34.5
8B(32) 34.7 75.9 64.9 81.3 68.4 23.8 75.6 60.6
-B(48) 47.6 86.7 75.8 92.7 81.7 23.9 81.3 70.0
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M ABLATION STUDIES

M.1 DISSECTING THE CONDENSER EXPERT ALGORITHM

In this appendix, we dissect the Condenser Expert algorithm and present empirical results demonstrat-
ing that each component of Condenser Experts contributes to the strong post-training performance.
Table 14 reports ablation results on both DeepSeek-V2-Lite (16B) and QWen2-MoE (14B) under
the math7k benchmark. We evaluate three progressively simplified variants: (i) aux-free only, which
removes auxiliary balancing objectives; (ii) aux-free+bias, which additionally incorporates the bias
mechanism; and (iii) aux-free+bias+share, which further enables expert sharing across tokens.

The results clearly show a consistent trend: performance improves as more components of the
Condenser Expert are included. For example, in DeepSeek-V2-Lite, the average score increases from
70.4 (aux-free) to 71.2 (aux-free+bias) and further to 73.1 when expert sharing is enabled. A similar
pattern is observed in QWen2-MoE, where the average accuracy rises from 59.0 to 59.4 and finally to
63.4.

These findings highlight that:

- Removing auxiliary loss alone is not sufficient to stabilize MoE post-training.

- Incorporating bias correction helps mitigate imbalance introduced by sparse optimization.

- Crucially, enabling expert sharing provides the largest improvement, indicating that shared experts
capture more generalizable knowledge and substantially enhance reasoning performance.

Overall, the ablation validates that each design choice in Condenser Experts is necessary, and that
combining all three components yields the best downstream performance.

Table 9: Evaluation of post-trained models (Zero-Shot results after 1 epoch training) on downstream
Math Reasoning datasets, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Dataset Model Model Size #Param (Experts) Post-train Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

math7k

DeepSeek-V2-Lite 16B 2.4B
aux-free+bias+share 59.4 92.5 69.1 91.5 79.5 36.1 83.6 73.1

aux-free+bias 58.8 90.7 69.3 88.7 74.2 36.1 80.3 71.2
aux-free 57.6 89.6 68.6 87.5 73.8 35.2 80.4 70.4

QWen2-MoE 14B 2.7B
aux-free+bias+share 57.2 74.6 55.7 86.0 61.8 33.1 75.6 63.4

aux-free+bias 48.2 76.6 52.7 80.3 59.2 26.8 71.8 59.4
aux-free 47.2 74.0 51.8 82.0 58.7 30.3 71.8 59.0

M.2 HOW TO CHOOSE SHARE EXPERTS

In this subsection, we conduct an ablation study to investigate how experts should be selected as
shared experts during post-training. Table 14 reports the results of comparing two selection strategies:
(i) choosing high-bias experts and (ii) choosing low-bias experts. Across both DeepSeek-V2-Lite
(16B) and QWen2-MoE (14B), we observe that selecting low-bias experts consistently leads to
stronger downstream performance on math reasoning benchmarks. For example, in the math7k
setting, low-bias experts achieve higher average accuracy (73.1 vs. 72.4 for DeepSeek-V2-Lite and
63.4 vs. 61.8 for QWen2-MoE). These results suggest that low-bias experts encode more generalizable
knowledge, making them more effective as shared experts in MoE post-training.

Table 10: Evaluation of post-trained models (Zero-Shot results after 2 epoch training) on downstream
Math Reasoning datasets to conduct ablation study on expert selection based on bias, including
SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Dataset Model Model Size #Param (Experts) Post-train Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

math7k
DeepSeek-V2-Lite 16B 2.4B high bias experts 60.1 90.2 70.4 90.2 74.2 37.0 84.5 72.4

low bias experts 59.4 92.5 69.1 91.5 79.5 36.1 83.6 73.1

QWen2-MoE 14B 2.7B high-bias experts 54.7 71.0 53.8 84.6 58.8 32.8 76.8 61.8
low-bias experts 57.2 74.6 55.7 86.0 61.8 33.1 75.6 63.4
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N HYPER-PARAMETERS

N.1 MATH7K DATASET AND MATH14K DATASET

In this subsection, we perform an ablation study to verify whether the number of fine-tuning epochs
is sufficient for convergence. Since training efficiency and stability are critical in post-training large
MoE models, it is important to ensure that extending training does not yield further improvements or
lead to overfitting. We therefore evaluate the performance of DeepSeek-V2-Lite (16B) and OLMoE
(7B) under the math7k and math14k benchmark with ESFT fine-tuning for 1, 2, and 3 epochs. The
results are reported in Table 12 and 11.

Overall, these findings confirm that our main experiments are conducted with models that have
already converged, and that increasing the number of training epochs does not lead to meaningful
gains.

Table 11: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-14K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size #Param (Experts) Distill Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

OLMoE 7B 1B
ESFT-1epoch 55.7 76.2 58.8 71.2 62.8 28.3 64.3 59.6
ESFT-2epoch 52.8 78.3 59.1 71.8 63.3 29.1 68.9 60.5
ESFT-3epoch 52.6 77.2 57.8 72.7 64.6 31.9 70.1 60.9

Table 12: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-7K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size #Param (Experts) Distill Type GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

DeepSeek-V2-Lite 16B 2.4B
ESFT-1epoch 54.1 88.0 65.3 83.7 72.7 26.8 79.4 67.1
ESFT-2epoch 58.6 80.9 65.8 90.7 62.3 27.6 76.1 66.0
ESFT-3epoch 58.2 75.8 65.2 89.0 56.5 29.5 73.5 64.0

OLMoE 7B 1B
ESFT-1epoch 57.0 78.5 58.6 72.0 64.3 28.3 76.1 62.1
ESFT-2epoch 53.8 70.9 55.7 65.0 61.5 31.5 69.7 58.3
ESFT-3epoch 50.3 69.3 49.5 54.5 59.2 27.6 59.2 52.8
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N.2 GAMMA FOR BIAS UPDATE

Table 13: Evaluation of different post-trained Qwen-2 model Zero-Shot Results on downstream math
reasoning tasks with different gamma settings after fine-tuning with Math-7K, including SingleEQ,
MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Gamma Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

G-1e-6 14B aux-free-loss 2.7B 48.6 -76.8 50.0 81.8 59.6 29.6 70.6 59.6
G-1e-5 14B aux-free+bias 2.7B 48.8 76.4 50.2 81.6 59.8 29.7 70.8 59.6
G-5e-5 14B aux-free+bias 2.7B 47.8 76.6 50.2 81.8 60.3 29.9 70.6 61.6
G-1e-4 14B aux-free+bias 2.7B 48.2 76.6 52.7 80.3 59.2 26.8 71.8 59.4
G-1e-3 14B aux-free+bias 2.7B 47.7 74.2 50.6 83.2 59.0 30.7 67.2 58.9
G-3e-3 14B aux-free+bias 2.7B 31.8 58.5 37.9 65.2 39.5 28.3 56.7 45.4
G-5e-3 14B aux-free+bias 2.7B 15.3 32.7 26.0 47.5 29.4 21.7 33.2 29.4
G-1e-2 14B aux-free+bias 2.7B 7.2 17.3 14.7 28.2 15.7 17.7 18.5 17.0

Table 14: Evaluation of different post-trained Deepseek-v2-lite model Zero-Shot Results on down-
stream math reasoning tasks with different gamma settings after fine-tuning with Math-7K, including
SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Gamma Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

G-1e-6 14B aux-free-loss 2.7B 56.2 89.4 68.9 86.2 73.2 35.2 79.0 69.8
G-1e-5 14B aux-free-loss 2.7B 56.7 89.6 69.8 87.8 74.0 35.8 79.6 70.5
G-5e-5 14B aux-free-loss 2.7B 58.6 90.6 70.2 88.6 74.4 36.2 80.6 71.1
G-1e-4 14B aux-free-loss 2.7B 58.8 90.7 69.3 88.7 74.2 36.1 80.3 71.2
G-1e-3 14B aux-free-loss 2.7B 43.4 78.7 62.8 80.5 60.5 25.2 71.0 60.3
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O REORGANIZED TABLES FOR MODEL COMPARISONS

The following tables provide detailed comparisons of model performance across different fine-tuning
strategies and datasets. Table 15 and Table 16 report zero-shot results on a suite of math reasoning
benchmarks (SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA) after supervised fine-
tuning (SFT) with Math-14K and Math-7K, respectively. We include both ESFT-tuned variants and
their corresponding base models to highlight the effectiveness of expert tuning. Table 17 presents
zero-shot pass@1 results (with 4 samples) on more challenging reasoning benchmarks (GPQA
Diamond, AIME 2024/2025, and MATH-500) using the Stanford-S1 dataset. Results are shown for
ESFT, DenseMixer, and our proposed ExpertCondenser method, alongside the corresponding base
models, enabling direct comparison of different post-training approaches for Mixture-of-Experts
LLMs.

Table 15: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-14K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

DeepSeek-V2-Lite 16B ESFT 2.4B 58.6 80.9 65.8 90.7 62.3 27.6 76.1 66.0
Qwen2 14B ESFT 2.7B 52.5 76.0 54.1 86.2 62.3 29.5 71.4 57.1
OLMOE 7B ESFT 1B 53.8 70.9 55.7 65.0 61.5 31.5 69.7 58.3

DeepSeek-V2-Lite 16B Base Model 2.4B 8.0 20.0 26.6 24.0 35.4 21.4 33.6 24.2
Qwen2 14B Base Model 2.7B 25.6 31.3 27.4 33.5 46.8 25.4 28.2 31.2
GPT-OSS 20B Base Model 3.6B 77.4 82.9 84.0 91.8 79.7 31.5 92.0 77.4
OLMOE 7B Base Model 1B 16.1 23.6 17.7 9.2 21.3 22.8 13.9 17.8

Table 16: Evaluation of SFT model Zero-Shot Results on downstream math reasoning tasks after
fine-tuning with Math-7K, including SingleEQ, MultiArith, AddSub, GSM8K, SVAMP, and AQuA.

Model Model Size Distill Type #Param (Experts) GSM8k SingleEq SVAMP MultiArith AddSub AQuA mawps AVG

DeepSeek-V2-Lite 16B ESFT 2.4B 54.7 87.2 67.3 86.8 68.1 28.7 76.3 67.0
Qwen2 14B ESFT 2.7B 46.9 69.3 54.1 75.7 52.2 27.6 68.1 56.2
OLMOE 7B ESFT 1B 52.8 78.3 59.1 71.8 63.3 29.1 68.9 60.5
DeepSeek-V2-Lite 16B Base Model 2.4B 8.0 20.0 26.6 24.0 35.4 21.4 33.6 24.2
Qwen2 14B Base Model 2.7B 25.6 31.3 27.4 33.5 46.8 25.4 28.2 31.2
GPT-OSS 20B Base Model 3.6B 77.4 82.9 84.0 91.8 79.7 31.5 92.0 77.0
OLMOE 7B Base Model 1B 16.1 23.6 17.7 9.2 21.3 22.8 13.9 17.8

Table 17: Evaluation of SFT model Zero-Shot P@ss1:4 samples Results on downstream math
reasoning benchmarks after fine-tuning with Stanford-S1, including GPQA Diamond, AIME 2024,
AIME 2025, and MATH-500.

Model Model Size Distill Type #Param (Experts) GPQA Diamond AIME 2024 AIME 2025 MATH-500 AVG

Qwen3 30B Base Model 2 3.3B 38.9 20.6 7.7 72.8 35.0
DeepSeek-V2-Lite 16B Base Model 2.4B 31.9 0.8(1/120) 1.7(2/120) 62.0 24.1
Qwen2 14B Base Model 2.7B 25.9 0.0 0.0 8.4 8.6

Qwen3 30B ESFT 2 3.3B 54.8 61.6 45.6 93.4 63.9
DeepSeek-V2-Lite 16B ESFT 2.4B 32.2 2.5(3/120) 2.5(3/120) 63.0 25.0
Qwen2 14B ESFT 2.7B 26.4 0.8(1/120) 0.8(1/120) 18.1 11.5

Qwen3 30B DenseMixer 2.4B 58.5 63.9 45.8 93.6 65.5
DeepSeek-V2-Lite 16B DenseMixer 2.4B 34.8 2.5(3/120) 2.5(3/120) 64.8 26.1
Qwen2 14B DenseMixer 2.4B 26.8 1.7(2/120) 0.8(1/120) 20.4 12.4

Qwen3 30B ExpertCondenser (Ours) 2.4B 68.8 68.3(82/120) 51.7(62/120) 96.8 71.4
DeepSeek-V2-Lite 16B ExpertCondenser (Ours) 2.4B 40.6 9.2(11/120) 6.7(8/120) 68.9 31.4
Qwen2 14B ExpertCondenser (Ours) 2.4B 34.6 6.7(8/120) 6.7(8/120) 28.6 19.5
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